

Django REST Framework - JSON API

A parser and renderer for Django REST
Framework [http://www.django-rest-framework.org/] that adds support
for the JSON API [http://jsonapi.org/] specification.

Build status: [image: Build Status] [https://travis-ci.org/kevin-brown/drf-json-api]

Does this work?

This package is currently being actively developed, but is not
widely used in production. If you find any problems when using this
package, please create a bug report at the issue
tracker [https://github.com/kevin-brown/drf-json-api/issues] so we can figure out how to fix it.

How do I use this?

This is designed to be used as only a renderer and parser and does not
provide any additional functionality that may be expected by JSON API.

Specific to a view(set)

from rest_framework import generics
from rest_framework_json_api.renderers import JsonApiRenderer

class ExampleView(generics.ListAPIView):
 renderer_classes = (JsonApiRenderer,)

The JSON API renderer is not limited to just list views and can be used
on any of the generic views. It supports viewsets as well as non-generic
views.

All views

The JSON API renderer can be used on all views by setting it as a
default renderer.

...
REST_FRAMEWORK = {
 "DEFAULT_RENDERER_CLASSES": (
 "rest_framework_json_api.renderers.JsonApiRenderer",
 "rest_framework.renderers.BrowsableAPIRenderer",
 # Any other renderers
),
 "DEFAULT_PARSER_CLASSES": (
 "rest_framework_json_api.parsers.JsonApiParser",
 "rest_framework.parsers.FormParser",
 "rest_framework.parsers.MultiPartParser",
 # Any other parsers
),
}
#...

This may break the API root view of the Default Router [http://www.django-rest-framework.org/api-guide/routers#defaultrouter], so
you may want to instead apply it to your viewsets.

What does this support?

The JSON API renderer supports all features of hyperlinked serializers
and will normalize attributes such as the url
field [http://www.django-rest-framework.org/api-guide/settings#url_field_name]
to match the JSON API specification.

Introspected resource types

JSON API uses resource
types [http://jsonapi.org/format/#document-structure-resource-types]
to determine what relations exist and how to better side-load resources
automatically. It is recommended that resource types match the URL
structure of the API and use a plural form. The resource type is
determined from the model, and is the plural form of the verbose model
name [https://docs.djangoproject.com/en/dev/ref/models/options/#verbose-name-plural].

If a verbose name cannot be determined, the generic keydata will
be used for the resource type.

Hyperlinked relations

JSON API will detect hyperlinked relations and set up the url
templates [http://jsonapi.org/format/#document-structure-url-templates]
to match the destinations and attribute names automatically.

Nested serializers

JSON API will render nested serializers to match the compound document
specification [http://jsonapi.org/format/#document-structure-compound-documents].
This will theoretically support any depth of nested serializers, but
only a single level is tested and supported.

Pagination

JSON API does not explicitly call out pagination within the
specification, but instead leaves it flexible for the developer to
implement. The JSON API renderer supports the default pagination provided
by Django REST Framework by adding it to the top level “meta” element. This
can be overriden by using a modified render, or a paginator that relies on a
header, such as the Link header based
paginator [https://github.com/kevin-brown/drf-link-pagination].

What this will not easily support

Due to limitations within the JSON API specification, as well as a need
to handle the most common easy cases, this JSON API renderer will not
work with all views. When designing views that work well with the JSON
API specification, there are a few needs that you should keep in mind.

Anything not related to rendering or parsing

This package is only designed to be used as a renderer and parser and
does not provide support for parts of the JSON API specification that
are not unique to the JSON API specification. This includes features
such as custom filtering of results and pagination that does not use the
response body. Features such as side-loading of data using query
parameters are also not supported.

Isn’t JSON API being actively developed?

Yes it is, and we will try to keep this package as close to the running
specification as possible. This means that things may break during
version changes, and until JSON API becomes stable we cannot guarantee
backwards compatibility. Once JSON API stabilizes, a deprecation process
will be established to match the policies of the JSON API specification.

Recommended packages

This parser/renderer combination is only meant to be used as one of many
packages that can be grouped together to create an API that supports the
JSON API specification.

Pagination

The Link header based
paginator [https://github.com/kevin-brown/drf-link-pagination] will
work with the renderer provided by this package.

JSON Patch

JSON API recommends using JSON Patch for PATCH requests, and allowing partial
updates through the PUT HTTP method. JSON Patch support is available for
Django REST Framework through a `third party package
<https://github.com/kevin-brown/drf-json-patch`__ and should be compatible.

Contents:

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (Unreleased)

Feedback

If you have any suggestions or questions about Django REST Framework - JSON API feel free to email me
at kevin@kevinbrown.in.

If you encounter any errors or problems with Django REST Framework - JSON API, please let me know!
Open an Issue at the GitHub https://github.com/kevin-brown/drf-json-api main repository.

Installation

At the command line either via easy_install or pip:

$ easy_install drf-json-api
$ pip install drf-json-api

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv drf-json-api
$ pip install drf-json-api

Usage

To use Django REST Framework - JSON API in a project:

import drf-json-api

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/kevin-brown/drf-json-api/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django REST Framework - JSON API could always use more documentation, whether as part of the
official Django REST Framework - JSON API docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/kevin-brown/drf-json-api/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up drf-json-api for
local development.

	Fork [https://github.com/kevin-brown/drf-json-api/fork] the drf-json-api repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/drf-json-api.git

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass style and unit
tests, including testing other Python versions with tox:

$ tox

To get tox, just pip install it.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy.
Check https://travis-ci.org/kevin-brown/drf-json-api
under pull requests for active pull requests or run the tox command and
make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests/test_detail.py

Credits

Development Lead

	Kevin Brown <kevin@kevinbrown.in>

Contributors

	John Whitlock <john@factorialfive.com>

History

0.1.0 (Unreleased)

	First release on PyPI.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		Django REST Framework - JSON API

 		Installation

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.0 (Unreleased)

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

